Solar heating in buildings by using a large storage water tank

Authors

Abstract

This paper shows the feasibility of implementing solar heating in Bariloche (3,600 degrees/day, 8.4°C mean annual temperature) through heat pipe collectors and water contained in insulated water tanks for further use through floor heating systems. Dynamic thermal models are used to optimize the system in order to meet 13,000 kWh annual demand, which represents both a 50m2 single-family, non-insulated affordable housing unit (260kWh/m2) or a 100m2 insulated unit (130 kWh/m2.) Such a demand could be met through five standard collectors, each containing 20 pipes (2,088m2, opening area), and a 63m3 tank at a cost of USD 27,000 or eight collectors and an 11m3 tank at a cost of USD 11,650. This paper discusses the reasons why Bariloche, whose mean temperature is similar to that of developed countries located in cold areas, achieves more economical solutions such as: a) the use of vacuum collectors instead of flat-plate collectors; b) properly distributed solar resources and heat demand; and c) an affordable type of water tank that enables proper insulation. This study concludes there is potential for the implementation of this technology in large parts of South America requiring heating solutions.

Author Biographies

Luis Eduardo Juanicó, Instituto Andino Patagónico en Tecnologías Biológicas y Geoambientales

Andean-Patagonian Institute of Biological and Geo- Environmental Technologies (IPATEC), CONICET and Comahue National University

Alejandro D. González, Instituto Andino Patagónico en Tecnologías Biológicas y Geoambientales

Andean-Patagonian Institute of Biological and Geo- Environmental Technologies (IPATEC), CONICET and Comahue National University

References

Bär, K., Rühaak, W., Welsch, B., Schulte, D., Homuth, S., & Sass. I. (2015). Seasonal high temperature heat storage with medium deep borehole heat exchangers. Energy Procedia, 76, 351-360. https://doi.org/10.1016/j.egypro.2015.07.841.
Bauer, D., Marx, R., Nußbicker-Lux, J.; Ochs, F., Heidemann, W. & Müller-Steinhagen, H. (2010). German central solar heating plants with seasonal heat storage. Solar Energy, 84(4), 612-623. https://doi.org/10.1016/j.solener.2009.05.013
Bergman, T.L., Lavine, A.S., Incropera, F.P., & DeWitt, D.P. (2011). Fundamentals of heat and mass transfer (7th ed.). Hoboken, NJ: Wiley.
BOWA Solution. (2017). Recuperado de https://bowasolution.es.aliexpress.com/store/1333457
Colclough, S. & Griffiths, P. (2016). Financial analysis of an installed small scale seasonal thermal energy store. Renewable Energy, 86, 422-428. https://doi.org/10.1016/j.renene.2015.08.032.
Díaz, C. y Czajkowski, J. (2006). Auditorías energéticas en viviendas de interés social en Río Grande, Tierra del fuego. Avances en Energías Renovables y Medio Ambiente, 10, 07.33-07.38.
González, A.D. (2009). Energy subsidies in Argentina lead to inequalities and low thermal efficiency. Energies, 2(3), 769-788. https://doi.org/10.3390/en20300769.
______ (2013). Management of disaster risks derived from very large fuel subsidies to natural gas in Argentina. En Climate change and disaster risk management. Climate change management, (pp. 463-473). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-31110-9_30.
______ (2014). Casas confortables con mínimo uso de energía: estudio de casos prácticos para Argentina y Chile. San Carlos de Bariloche: Autor. Recuperado de http://www.ipatec.conicet.gob.ar/casas-confortables-con-minimo-uso-de-energia-estudio-de-casos-practicos-para-argentina-y-chile/.
González, A.D., Carlsson-Kanyama, A., Crivelli, E.S., & Gortari, S. (2007) Residential energy use in one-family households with natural gas provision in a city of the Patagonian Andean region. Energy Policy, 35(4), 2141-2150. https://doi.org/10.1016/j.enpol.2006.07.004.
Grossi Gallegos, H. y Righini, R. (2007). Atlas de energía solar de la República Argentina. Argentina: Secretaría de Ciencia y Tecnología y Universidad Nacional de Luján.
Juanicó, L. & González, A.D. (2008a). Thermal efficiency of natural gas balanced-flue space heaters: measurements for commercial devices. Energy and Buildings, 40(6), 1067-1073. https://doi.org/10.1016/j.enbuild.2007.10.007
______ (2008b). Savings in natural gas consumption by doubling thermal efficiencies of balanced-flue space heaters. Energy and Buildings, 40(8), 1479-1486. https://doi.org/10.1016/j.enbuild.2008.02.002.
Juanicó, L.E., Di Lalla, N., & González, A.D. (2017). Full thermal-hydraulic and solar modeling to study low-cost solar collectors based on a single long LDPE hose. Renewable and Sustainable Energy Reviews, 73, 187-195. https://doi.org/10.1016/j.rser.2017.01.126.
Laboratorio de Ambiente Humano y Vivienda. (2017). Conductividad térmica de materiales. Recuperado de http://www.mendoza-conicet.gob.ar/lahv/soft/resistencia/
Rad, F. & Fung, A. (2016). Solar community heating and cooling system with borehole thermal energy storage – Review of systems. Renewable Sustainable Energy Reviews, 60, 1550-1561. https://doi.org/10.1016/j.rser.2016.03.025.
Servicio Meteorológico Nacional. (2017). Caracterización: Estadísticas de largo plazo. Recuperado de https://www.smn.gob.ar/caracterizaci%C3%B3n-estad%C3%ADsticas-de-largo-plazo.
Sibbitt, B., Mcclenahan, D., Djebbar, R., Thornton, J., Wong, B., Carriere, J.& Kokko, J. (2012). The performance of a high solar fraction seasonal storage district heating system – five years of operation. Energy Procedia 30, 856-865. https://doi.org/10.1016/j.egypro.2012.11.097.
Stickney, B. & Soifer, B. (2006). Collector efficiency: second order curves [gráfico]. Recuperado de http://solarprofessional.com/articles/products-equipment/solar-heating/solar-thermal-hydronics/page/0/4#.WzFmlKf0k2z